Controllability of functional differential systems of Sobolev type in Banach spaces
نویسندگان
چکیده
The problem of controllability of linear and nonlinear systems represented by ordinary differential equations in finite dimensional spaces has been extensively studied. Several authors [5,6,12-14] have extended the concept to infinite dimensional systems in Banach spaces with bounded operators. Triggiani [17] established sufficient conditions for controllability of linear and nonlinear systems in Banach spaces. Exact controllability of abstract semilinear equations has been studied by Lasiecka and Triggiani [10]. Kwun et al [8] investigated the controllability and approximate controllability of delay Volterra systems by using a fixed point theorem. Recently Balachandran et al [1-3] studied the controllabilty and local null controllability of nonlinear integrodifferential systems and functional differential systems in Banach spaces and it was shown that the controllability problem in Banach spaces can be converted into one of a fixed-point problem for a single-valued mapping. The purpose of this paper is to study the controllability of Sobolev type partial functional differential systems in Banach spaces. The equation considered here serves as an abstract formulation of Sobolev type partial functional differential equations which arise in many physical phenomena [4,7,9,11,16]. Consider a nonlinear partial functional differential system of the form
منابع مشابه
Controllability of semilinear functional integrodifferential systems in Banach spaces
Controllability of nonlinear systems represented by ordinary differential equations in infinite-dimensional spaces has been extensively studied by several authors. Naito [12,13] has studied the controllability of semilinear systems whereas Yamamoto and Park [19] discussed the same problem for parabolic equation with uniformly bounded nonlinear term. Chukwu and Lenhart [3] have studied the contr...
متن کاملControllability on Infinite Time Horizon for First and Second Order Functional Differential Inclusions in Banach Spaces
In this paper, we shall establish sufficient conditions for the controllability on semi-infinite intervals for first and second order functional differential inclusions in Banach spaces. We shall rely on a fixed point theorem due to Ma, which is an extension on locally convex topological spaces, of Schaefer’s theorem. Moreover, by using the fixed point index arguments the implicit case is treated.
متن کاملControllability of Stochastic Semilinear Functional Differential Equations in Hilbert Spaces
In this paper approximate and exact controllability for semilinear stochastic functional differential equations in Hilbert spaces is studied. Sufficient conditions are established for each of these types of controllability. The results are obtained by using the Banach fixed point theorem. Applications to stochastic heat equation are given.
متن کاملOn X ̃-frames and conjugate systems in Banach spaces
The generalization of p-frame in Banach spaces is considered in this paper. The concepts of an $tilde{X}$-frame and a system conjugate to $tilde{X}$-frame were introduced. Analogues of the results on the existence of conjugate system were obtained. The stability of $tilde{X}$-frame having a conjugate system is studied.
متن کاملOn an atomic decomposition in Banach spaces
An atomic decomposition is considered in Banach space. A method for constructing an atomic decomposition of Banach space, starting with atomic decomposition of subspaces is presented. Some relations between them are established. The proposed method is used in the study of the frame properties of systems of eigenfunctions and associated functions of discontinuous differential operators.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Kybernetika
دوره 34 شماره
صفحات -
تاریخ انتشار 1998